Plan Folding Motion for Rigid Origami via Discrete Domain Sampling
نویسندگان
چکیده
Self-folding robot is usually modeled as rigid origami, a class of origami whose entire surface remains rigid during folding except at crease lines. In this work, we focus on finding valid folding motion that brings the origami from the unfolded state continuously to the folded state. Although recent computational methods allow rapid simulation of folding process of certain rigid origamis, these methods can fail even when the input crease pattern is extremely simple but with implicit folding orders. Moreover, due to the rigidity requirement, the probability of generating a valid configuration via uniform sampling is zero, which greatly hinders that applicability of traditional sampling-based motion planners. We propose a novel sampling strategy that samples in the discrete domain. Our experimental results show that the proposed method could efficiently generate valid configurations. Using those configurations, the planners successfully fold several types of rigid origamis that the existing methods fail to fold and could discover multiple folding paths for Multi-DOF origamis.
منابع مشابه
Folding Rigid Origami with Closure Constraints
Rigid origami is a class of origami whose entire surface remains rigid during folding except at crease lines. Rigid origami finds applications in manufacturing and packaging, such as map folding and solar panel packing. Advances in material science and robotics engineering also enable the realization of self-folding rigid origami and have fueled the interests in computational origami, in partic...
متن کاملSimulation of Rigid Origami
This paper presents a system for computer based interactive simulation of origami, based on rigid origami model. Our system shows the continuous process of folding a piece of paper into a folded shape by calculating the configuration from the crease pattern. The configuration of the model is represented by crease angles, and the trajectory is calculated by projecting angles motion to the constr...
متن کاملReentrant Origami-Based Metamaterials with Negative Poisson's Ratio and Bistability.
We investigate the unique mechanical properties of reentrant 3D origami structures based on the Tachi-Miura polyhedron (TMP). We explore the potential usage as mechanical metamaterials that exhibit tunable negative Poisson's ratio and structural bistability simultaneously. We show analytically and experimentally that the Poisson's ratio changes from positive to negative and vice versa during it...
متن کاملTopological Mechanics of Origami and Kirigami.
Origami and kirigami have emerged as potential tools for the design of mechanical metamaterials whose properties such as curvature, Poisson ratio, and existence of metastable states can be tuned using purely geometric criteria. A major obstacle to exploiting this property is the scarcity of tools to identify and program the flexibility of fold patterns. We exploit a recent connection between sp...
متن کاملAn End-to-End Approach to Self-Folding Origami Structures by Uniform Heat
This paper presents an end-to-end approach to automate the design and fabrication process for self-folding origami structures. Self-folding origami structures by uniform heat are robotic sheets composed of rigid tiles and joint actuators. When they are exposed to heat, each joint folds into a preprogrammed angle. Those folding motions transform themselves into a structure, which can be used as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015